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ASYMPTOTIC ANALYSIS OF THE STRUCTURE OF LONG-WAVE GÖRTLER VORTICES

IN A HYPERSONIC BOUNDARY LAYER

UDC 532.526.013.4:533.6.011.55V. V. Bogolepov

An asymptotic (at high Reynolds and Görtler numbers) model of nonlinear long-wave Görtler vortices
localized inside the boundary layer near a concave surface located in a hypersonic viscous gas flow in
the regime of weak viscid–inviscid interaction is constructed. The maximum wavelength is evaluated.
Numerical solutions are obtained for an inviscid local limit in the linear approximation. It is shown
that an increase in the free-stream Mach number exerts a stabilizing effect on the vortices, and a
change in the Prandtl number has no significant effect on them. For the case where the vortices form
a three-layered disturbed flow structure, it is shown analytically for the first time that surface heating
exerts a stabilizing action on the vortices.

An analysis of the Navier–Stokes equations at high Reynolds and Görtler numbers allowed construction of
an asymptotic theory of Görtler vortices [1] in the boundary layer of a fluid near a concave surface [2–8]. In studying
the Görtler vortices in a compressible boundary layer, one should take into account the effect of various factors, such
as the free-stream Mach number, the surface temperature, the Prandtl number, and the physicochemical processes
in the gas. Of special interest is the study of the influence of surface cooling on vortex dynamics [9–12], since the
neglect of this parameter does not allow one to ensure the necessary strength of constructions of flying vehicles at
hypersonic velocities. El-Hady and Verma [10] noted a weak stabilizing effect of surface cooling on vortices, whereas
the authors of [9, 11, 12] believed that surface cooling has a destabilizing influence on vortices. The destabilizing
action of surface cooling was supported by studying the dynamics of short-wave vortices [13], and an explanation of
this phenomenon was proposed. The mechanism of the stabilizing effect of increasing Mach number on the vortices
was described in [14].

The dynamics of long-wave Görtler vortices near a concave surface exposed to a hypersonic gas flow is studied
in the present paper in the linear approximation in the regime of weak viscid–inviscid interaction at high Reynolds
and Görtler numbers.

1. Let a concave surface be exposed to a uniform viscous gas flow. It is assumed that its dimensionless
curvature is small: k = L/R� 1 (R is the radius of surface curvature and L is the distance from the leading edge
of the surface to the point of incipience of vortices), the free-stream Mach numbers is M∞ � 1, and the Reynolds
number is high (Re∞ = ρ∞u∞L/µ∞ � 1), but the laminar–turbulent transition has not yet occurred. Here ρ∞,
u∞, and µ∞ are the free-stream density, velocity, and viscosity of the gas, respectively. Hereinafter, all linear
dimensions are normalized to L, the pressure p and enthalpy h to ρ∞u2

∞ and u2
∞, respectively, and the remaining

parameters to their free-stream values.
It is also assumed that pressure perturbations due to the displacing action of the boundary layer ∆pδ and

the surface curvature ∆pk are small as compared to the free-stream gas pressure:

∆pδ ∼ δ/M∞ � 1/M2
∞, ∆pk ∼ k/M∞ � 1/M2

∞

(δ is the boundary-layer thickness). In the boundary layer with characteristic dimensions ∆x ∼ 1 and ∆y ∼ δ (the
x axis is directed along the surface and the y axis is normal to it), the stream functions obey the estimates for the
regime of weak hypersonic viscid–inviscid interaction [15]
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u ∼ h ∼ 1, v ∼ δ, p ∼ ρ ∼ 1/M2
∞, µ ∼ M2

∞, δ ∼ M2
∞/Re1/2

∞ , (1.1)

where u and v are the velocity components along the x and y axes, respectively. In obtaining these estimates, we
used the linear dependence of viscosity on enthalpy

µ = AM2
∞h (1.2)

and the equation of state of a perfect gas

γp = (γ − 1)ρh, (1.3)

where A is a constant and γ is the ratio of specific heats.
We introduce a vertical coordinate of the Lees–Dorodnitsyn type

n(x, y) =
1√
2x

y∫
0

ρ dy. (1.4)

Using estimates (1.1) and relations (1.2) and (1.3), we write the known self-similar boundary-layer equations

u′′ + ϕu′ = 0, ϕ =

n∫
0

u dn,
h′′

Pr
+ ϕh′ = −u′2,

(1.5)

u(0) = ϕ(0) = 0, h(0) = hw or h′(0) = 0, u(∞) = 1, h(∞) = 1/((γ − 1)M2
∞),

where ( · )′ = d/dn, the subscript w refers to quantities on the concave surface, and the Prandtl number Pr is assumed
to be constant. In solving the boundary-value problem (1.5), self-similar profiles of the streamwise component of
velocity u0(n) and enthalpy h0(n) in the undisturbed boundary layer in the cross section x0 ∼ 1 were obtained.

2. It is known that a two-dimensional laminar boundary layer on a concave surface may lose stability as the
critical Görtler number G∞ = 2(Re1/2

∞ /M2
∞)(L/R) is exceeded [1]. Then, streamwise stationary Görtler vortices

appear inside the boundary layer, and a two-dimensional flow becomes three-dimensional. Below we study the
development of such vortices with a wavelength greater than the boundary-layer thickness at high values of the
Görtler number G∞ ∼ æ/δ � 1 (k = æK, K ∼ 1, and δ � æ� 1), where the vortices are definitely absent.

We consider a disturbed vortex region of the flow with characteristic transverse dimensions ∆y ∼ δ and
∆z � δ (the z axis is perpendicular to the xy plane) at a finite distance x0 ∼ 1 from the leading edge of the concave
surface. It is assumed that the disturbed region occupies the entire boundary layer, the vortices are localized inside
this region, and the stream functions [see Eq. (1.1)] have the following orders:

u ∼ h ∼ 1, p ∼ ρ ∼ 1/M2
∞, µ ∼ M2

∞. (2.1)

In constructing multilayered flow patterns, this region being the main part of the boundary layer is usually
indicated in the literature by 2 [16], the weakly disturbed external region of a uniform incoming flow is indicated
by 1, and the internal near-wall part of the boundary layer is indicated by 3.

Let vortex formation cause nonlinear disturbances in the boundary layer (for example, ∆u ∼ u ∼ 1). In
this case, in the field of centrifugal forces, there appears an additional pressure perturbation ∆p, which induces the
velocity component w in the direction of the z axis:

∆p ∼ kρu2∆y ∼ æδ/M2
∞, w ∼ (∆p/ρ)1/2 ∼ (æδ)1/2. (2.2)

Since the disturbed vortex region is essentially three-dimensional, the continuity equation yields estimates
for the characteristic transverse size of this region ∆z and the vertical component of velocity v

∆z ∼ w∆x/u ∼ (æδ)1/2∆x, v ∼ u∆y/∆x ∼ δ/∆x, (2.3)

where (δ/æ)1/2 � ∆x 6 1 is the characteristic longitudinal scale of the disturbed vortex region. For ∆x ∼ 1,
Eq. (2.3) yields an estimate for the maximum characteristic transverse size of the disturbed vortex region (or the
maximum wavelength of the Görtler vortices in the gas):

∆z∗ ∼ (æδ)1/2.

A comparison of the orders of magnitude of convective and dissipative terms of the Navier–Stokes equations
[ρuux ∼ (µuy)y/Re∞] shows that viscosity in the disturbed vortex region should be taken into account only for
∆x ∼ 1; for ∆x� 1, viscous effects are insignificant.
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In considering three-dimensional disturbed regions of the boundary layer with characteristic transverse di-
mensions ∆z � δ, it is necessary to take into account their possible interaction with weakly disturbed external
regions of the uniform incoming flow, where ρ ∼ u ∼ 1 (see, e.g., [17]). For the interaction of such regions, it is
necessary that the order of magnitude of the vertical component of velocity v remain constant [16]. In this case,
the external region is region 1 with characteristic dimensions (δ/æ)1/2 � ∆x 6 1 and ∆y ∼ ∆z ∼ (æδ)1/2∆x� δ.
The estimates show that a pressure perturbation ∆p ∼ ρuv∆y/∆x ∼ æ1/2δ3/2/∆x is induced in this region; for
∆x � (δ/æ)1/2, this perturbation is smaller in order of magnitude than that induced near the external boundary
of the disturbed vortex region 2 [see (2.2)]. This means that disturbances induced in the disturbed vortex region 2
decay in the external region 1, and there is no reverse effect of disturbances from region 1 on region 2.

Estimates (2.1)–(2.3) allow introduction of new variables x = x0 + ∆xx2, y = δy2, and z = (æδ)1/2∆xz2

and asymptotic expansions of the stream functions for the disturbed spatial vortex region 2:

u = u2 + . . . , v = (δ/∆x)v2 + . . . , w = (æδ)1/2w2 + . . . ,
(2.4)

p =
1

γM2
∞

+ . . .+
æδ

M2
∞
p2 + . . . , ρ =

ρ2

M2
∞

+ . . . , h = h2 + . . . , µ = M2
∞µ2 + . . . .

Hereinafter, insignificant terms in the expansion for p are omitted, which does not affect the transverse component
of velocity w.

Substituting expansions (2.4) into the Navier–Stokes equations and into Eqs. (1.2) and (1.3) and performing
the limiting transition

M∞ →∞, δ → 0, æ→ 0, M∞δ → 0, M∞æ→ 0, δ � æ� 1, (2.5)

we find that the flow in region 2 in the first approximation is described by the system

∂(ρ2u2)
∂x2

+
∂(ρ2v2)
∂y2

+
∂(ρ2w2)
∂z2

= 0,

ρ2

(
u2

∂u2

∂x2
+ v2

∂u2

∂y2
+ w2

∂u2

∂z2

)
= ∆x

∂

∂y2

(
µ2

∂u2

∂y2

)
,

δ

æ
ρ2

(
u2

∂v2

∂x2
+ v2

∂v2

∂y2
+ w2

∂v2

∂z2

)
+ ∆x2

(
Kρ2u

2
2 +

∂p2

∂y2

)
= 0, (2.6)

ρ2

(
u2

∂w2

∂x2
+ v2

∂w2

∂y2
+ w2

∂w2

∂z2

)
+
∂p2

∂z2
= ∆x

∂

∂y2

(
µ2
∂w2

∂y2

)
,

ρ2

(
u2

∂h2

∂x2
+ v2

∂h2

∂y2
+ w2

∂h2

∂z2

)
= ∆x

[ 1
Pr

∂

∂y2

(
µ2

∂h2

∂y2

)
+ µ2

(∂u2

∂y2

)2]
,

(γ − 1)ρ2h2 = 1, µ2 = Ah2.

For ∆x ∼ 1, when the characteristic dimensions of the boundary layer and disturbed vortex region 2 have
the same order of magnitude and viscous effects should be taken into account, usual no-slip and adhesion conditions
are fulfilled on the concave surface:

u2 = v2 = w2 = 0, h2 = h2w or
∂h2

∂y2
= 0 (y2 = 0), (2.7)

and the external boundary of this region (because of the absence of its interaction with the external region 1) obeys
the same conditions as at the external boundary of the two-dimensional Prandtl boundary layer:

u2 → 1, w2 → 0, h2 → 1/[(γ − 1)M2
∞] (y2 →∞). (2.8)

In addition, the initial conditions satisfied in the cross section x = x0 are

u2 = u0(y2), v2 = ∆xA1/2(γ − 1)1/2v0(y2), w2 = 0, h2 = h0(y2),
(2.9)

p2 = − K

γ − 1

y2∫
0

ρ0u
2
0 dy2, ρ2 =

ρ0(y2)
γ − 1

, µ2 = Aµ0(y2) (x2 = 0),
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and the solution satisfies the condition of periodicity in the transverse direction

f(x2, y2, z2) = f(x2, y2, z2 + λ), f ≡ {u2, v2, w2, p2, ρ2, h2, µ2}, (2.10)

where λ is the wavelength of vortices.
The solution of the boundary-value problem (2.6)–(2.10) describes the nonlinear development of long-wave

Görtler vortices for ∆z ∼ (æδ)1/2∆x � δ, when they occupy the entire hypersonic boundary layer (∆y ∼ δ), and
the Görtler number is high (G∞ ∼ æ/δ � 1). If the characteristic length of the disturbed vortex region is small
as compared to the characteristic length at which the stream functions in the boundary layer change (∆x � 1),
the problem becomes local, the evolution of vortices occurs in a plane–parallel flow, Eqs. (2.6) have no dissipative
terms, and only no-slip conditions should be taken into account on the concave surface. To satisfy the adhesion
conditions near the surface, one can additionally consider the viscous sublayer. If the characteristic length of the
vortex region is commensurable with the boundary-layer thickness (∆x ∼ 1), the “growth” of the boundary layer
should be taken into account [3].

In (2.6)–(2.10), the variables x2, y2, z2, v2, w2, ρ2, µ2, and p2 are related to the quantities λ/(2πK1/2A1/4(γ−
1)1/4), A1/2(γ − 1)1/2, λ/(2π), 2πK1/2A3/4(γ − 1)3/4/λ, K1/2A1/4(γ − 1)1/4, 1/(γ − 1), A, and KA1/2/(γ − 1)1/2,
respectively; the vertical scale of the disturbed vortex region is the same quantity A1/2(γ − 1)1/2 that is used for
the vertical coordinate of the boundary layer n near the concave surface (1.4). In the new variables (the subscript 2
is omitted), the boundary-value problem acquires the form

∂(ρu)
∂x

+
∂(ρv)
∂y

+
∂(ρw)
∂z

= 0,

ρ
(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=

∆x
Re

∂

∂y

(
µ
∂u

∂y

)
,

δ

æ
ρ
(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+ ∆x2λ2

1

(
ρu2 +

∂p

∂y

)
= 0,

ρ
(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
+
∂p

∂z
=

∆x
Re

∂

∂y

(
µ
∂w

∂y

)
,

ρ
(
u
∂h

∂x
+ v

∂h

∂y
+ w

∂h

∂z

)
=

∆x
Re

[ 1
Pr

∂

∂y

(
µ
∂h

∂y

)
+ µ

(∂u
∂y

)2]
, (2.11)

ρh = 1, µ = h,

u = v = w = 0, h = hw or
∂h

∂y
= 0 (y = 0),

u→ 1, w → 0, h→ 1/[(γ − 1)M2
∞] (y →∞),

u = u0(y), v =
∆x
Re

v0(y), w = 0, p = −
y∫

0

ρ0u
2
0 dy,

ρ = ρ0(y), µ = µ0(y), h = h0(y) (x = 0),

f(x, y, z) = f(x, y, z + 2π), f ≡ {u, v, w, p, ρ, h, µ},

Re = 2πK1/2A1/4(γ − 1)1/4/λ, λ1 = λ/(2πA1/2(γ − 1)1/2),

where Re ∼ 1 is the local Reynolds number and λ1 > 1 is the ratio of the vortex wavelength to the boundary-layer
thickness.

3. We assume that the characteristic streamwise size of the disturbed vortex region is ∆x ∼ (δ/æ)1/2 � 1.
Then it follows from (2.3) that its transverse dimensions are identical in order of magnitude ∆y ∼ ∆z ∼ δ. The
ratio of the vortex wavelength to the boundary-layer thickness may be prescribed by the parameter λ1 > 1. In this
case, the longitudinal change in the stream functions in the boundary layer is insignificant, the evolution of vortices
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occurs in a plane–parallel flow, Eqs. (2.11) have no dissipative terms, and only no-slip conditions should be satisfied
at the concave surface. Under these conditions, we obtain

∂(ρu)
∂x

+
∂(ρv)
∂y

+
∂(ρw)
∂z

= 0, u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= 0,

ρ
(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+ λ2

1

(
ρu2 +

∂p

∂y

)
= 0, ρ

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
+
∂p

∂z
= 0,

u
∂h

∂x
+ v

∂h

∂y
+ w

∂h

∂z
= 0, ρh = 1, (3.1)

v = 0 (y = 0), u→ 1, w → 0, h→ 1/[(γ − 1)M2
∞] (y →∞),

u→ u0(y), v → 0, w → 0, p→ −
y∫

0

ρ0u
2
0 dy, ρ→ ρ0(y), h→ h0(y) (x→ −∞),

f(x, y, z) = f(x, y, z + 2π), f ≡ {u, v, w, p, ρ, h}.

For small perturbations of the boundary-layer flow, the boundary-value problem may be linearized with
respect to the initial conditions:

u = u0(y) + αU + . . . , v = αV + . . . , w = αW + . . . ,
(3.2)

p = −
y∫

0

u2
0

h0
dy + αP + . . . , h = h0(y) + αH + . . . , ρ =

1
h0(y)

− α H

h2
0(y)

+ . . . , α� 1

[the last relation in (3.1) for density ρ is taken into account here]. After linearization (3.2), normal-mode represen-
tation of the solution [18], and introduction of a new vertical variable

F (x, y, z) = F (y) exp (βx)(sin z, cos z), n0(x0, y) =
1√
2x0

y∫
0

dy

h0
(3.3)

the boundary-value problem (3.1) reduces to one equation in ordinary derivatives for the function V1 = V/u0:

V ′′1 + 2
(u′0
u0
− h′0
h0

)
V ′1 −

h2
0

Λ2
V1 =

1
B2

(
h′0 −

2u′0h0

u0

)
V1,

(3.4)

V ′1(0) = V1(∞) = 0, Λ =
λ1

(2x0)1/2
, B =

β

(2x0)1/4
, ( · )′ =

d

dn0
.

The solution of the boundary-value problem (3.4) allows determination of its eigenfunctions V (n0) (vertical
component of the vortex velocity) and eigenvalues B (increment of the vortex amplitude).

The numerical solution of (3.4) is obtained by the method of inverse iterations with shifting [19] for the
first three vortex modes and different functions u0(n0) and h0(n0) in the boundary layer; the specific heat capacity
is γ = 1.4.

Figure 1a and b shows the increments B1 and B2 for the first two modes as functions of the relative
wavelength of the vortices Λ > 1 for Pr = 1 and M∞ = 5, 15.8, and 50 (curves 2–4, respectively). The surface
temperature is 10 times the free-stream temperature (Tw = 10T∞), which corresponds to the ultimate strength
of the surface material. Curve 1 is calculated for the boundary layer in a fluid. A principal difference in the
behavior of the dependences for the first mode and all subsequent modes should be noted. First, the increment B1

increases with increasing M∞ for all values of Λ, whereas the increments of higher modes Bm (m = 2, 3, . . .), vice
versa, decrease with increasing Mach number (except for a range of small values of M∞ and Λ, which decreases
with increasing mode number m). Second, for all values of M∞, the increment B1 increases monotonically with
increasing Λ, and the increments Bm (m = 2, 3, . . .) are almost independent of Λ (except for the same range of the
values of M∞ and Λ). A similar behavior of vortices was obtained from an analytical solution [5, 8] in studying
centrifugal instability of the boundary layer of a fluid with intense suction [20], where the layer thickness is constant:
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Fig. 1

Fig. 2

B1 = Λ1/2 and Bm ≈
√

2/(m2 − 1) (m = 2, 3, . . . and Λ � 1). Such a character of variation of B1 means that
the first long-wave mode is separated from the subsequent modes as the vortex wavelength increases, and its linear
growth should occur at smaller characteristic distances.

An increase in M∞ leads to heating of the boundary layer, increase in its thickness (δ ∼ M2
∞/Re1/2

∞ ∼ M3/2
∞ δf)

and characteristic length of the disturbed vortex region [∆x ∼ (δ/æ)1/2 ∼ M3/4
∞ ∆xf ] as compared to the boundary

layer of a fluid (the subscript “f” refers to fluid parameters). This induces a decrease in the vortex growth rate
reduced to the characteristic length (of the order of unity)

Be ∼ B/∆x ∼ B/(M3/4
∞ ∆xf),

since an increase in the numerator is insignificant, and an increase in the denominator plays the determining role [14].
The same fact is responsible for the stabilizing effect of the increase in the Mach number M∞ on long-wave Görtler
vortices.

Figure 2a and b shows the effect of the dimensionless surface enthalpy h0(0) on the increments of two first
modes B1 and B2 for M∞ = 50 and Pr = 1 [curve 1 refers to the fluid and curve 2 refers to a heat-insulated
surface with h′0(0) = 0; curves 3–5 are calculated foe h0(0) = 0.1, 0.01, and 0, respectively]. Surface heating leads
to an insignificant increase in the first-mode increment B1; the increments of higher modes Bm (m = 2, 3, . . . )
increase approximately twofold from the values for an absolutely cold surface with h0(0) = 0 to the values for a
heat-insulated surface with h′0(0) = 0. It is known, however, that surface heating increases the boundary-layer
thickness [20] and, hence, the characteristic dimensions of the vortices. Therefore, it is not possible to evaluate
unambiguously the influence of surface heating on the vortex growth rate Be. (A weak stabilizing effect of surface
heating on long-wave vortices was noted in [9, 11, 12].)
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Fig. 3

Figure 3 shows the effect of the Prandtl number Pr on the increments B for two higher modes (the solid
and dashed curves refer to B1 and B2, respectively) for M∞ = 50 and Tw = 10T∞. An increase in Pr from 0.5
to 1 (curves 1 and 2) leads to an increase in the increment for the first mode and exerts practically no effect on the
increments of higher modes (the curves obtained for the third mode are almost indiscernible and are not plotted in
Fig. 3).

According to estimates (2.3), the characteristic length of the vortex region is proportional to the relative
wavelength of the vortices; therefore, the vortex growth rate Be ∼ B/∆x ∼ B/Λ decreases with increasing Λ (the
governing quantity in this fraction is also the denominator).

The profiles of the eigenfunctions V (n0) for Λ = 10 for the first, second, and third modes are presented in
Fig. 4a, b, and c, respectively (curves 1 are calculated for a fluid and curves 2–4 are calculated for M∞ = 5, 15.8,
and 50, respectively, and Pr = 1 and Tw = 10T∞). It follows from Eq. (3.4) that V ∼ exp (−h0n0/Λ) as n0 →∞.
Therefore, the decay of eigenfunctions significantly decreases with increasing M∞ (since h0 ∼ 1/M2

∞ as n0 → ∞)
and relative wavelength of the vortices Λ. Nevertheless, an increase in M∞ leads to a corresponding extension of the
vertical coordinate n0 [see (3.3)] and does not increase the values of the physical variable y at which vortex decay
occurs. However, as the wavelength increases, the vortices at the linear stage of development go further outside the
external edge of the boundary layer and decay at distances ∆y ∼ ∆z ∼ (æδ)1/2∆x� δ. This fact was noted in [3];
it is associated with the use of the normal-mode representation of solution (3.3).

4. We consider the evolution of long-wave vortices that introduce only small perturbations (for instance,
∆u � u ∼ 1) into the main part of the boundary layer (region 2) and may induce nonlinear perturbations (for
example, ∆u ∼ u� 1) in its near-wall part (region 3). We assume that the friction coefficient

Cτ =
δ

M2
∞
c =

µ

Re∞

(∂u
∂y

)
w

and the heat-transfer coefficient

Cq =
δ

M2
∞

b

Pr
=

µ

Re∞Pr

(∂h
∂y

)
w

(b and c are constants) retain their orders of magnitude in region 3 for ∆y/δ � 1. Then, from Eqs. (1.2) and
(1.3), we can find the distributions of the longitudinal component of velocity u and enthalpy h in this part of the
undisturbed boundary layer:

u =
c

b

(2b
A

∆y
δ

+ h2
w

)1/2

− c

b
hw, h =

(2b
A

∆y
δ

+ h2
w

)1/2

,

(4.1)

u ≈ c

Ahw

∆y
δ
, h ≈ hw +

b

Ahw

∆y
δ

for
(∆y
δ

)1/2

� hw 6 1.
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Fig. 4

Assuming that the flow in region 3 is viscous, spatial, and nonlinear, by comparing the main terms of the
Navier–Stokes equations [Re∞ρu ∂u/∂x ∼ ∂(µ∂u/∂y)/∂y, ∂(ρu)/∂x ∼ ∂(ρv)/∂y ∼ ∂(ρw)/∂z, and ∆p ∼ ρw2] and
using the approximate relations (4.1), we can obtain estimates of the thickness of region 3, vertical and transverse
components of velocity, and pressure perturbation:

∆y ∼ hwδ∆x1/3, v ∼ hwδ

∆x1/3
, w ∼ ∆z

∆x2/3
, ∆p ∼ ∆z2

M2
∞hw∆x4/3

. (4.2)

Estimates (4.2) allow introduction of new variables x = x0 + ∆xx3, y = hwδ∆x1/3y3, and z = ∆zz3 and
asymptotic expansions of the stream functions for the near-wall part of the disturbed vortex region:

u = ∆x1/3u3 + . . . , v =
hwδ

∆x1/3
v3 + . . . , w =

∆z
∆x2/3

w3 + . . . ,

(4.3)
p =

1
γM2
∞

+ . . .+
∆z2

M2
∞hw∆x4/3

p3 + . . . , ρ =
ρw

M2
∞hw

+ . . . ,

h = hw + ∆x1/3h3 + . . . , µ = M2
∞hwµw + . . . .

Substituting expansions (4.3) into the Navier–Stokes equations and into Eqs. (1.2) and (1.3) and performing
the limiting transition (2.5) for ∆x1/3 � hw 6 1, we find that the flow in region 3 in the first approximation is
described by a system of equations for an incompressible fluid:
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∂u3

∂x3
+
∂v3

∂y3
+
∂w3

∂z3
= 0,

∂p3

∂y3
= 0,

ρw

(
u3

∂u3

∂x3
+ v3

∂u3

∂y3
+ w3

∂u3

∂z3

)
= µw

∂2u3

∂y2
3

,

(4.4)

ρw

(
u3

∂w3

∂x3
+ v3

∂w3

∂y3
+ w3

∂w3

∂z3

)
+
∂p3

∂z3
= µw

∂2w3

∂y2
3

,

ρw

(
u3

∂h3

∂x3
+ v3

∂h3

∂y3
+ w3

∂h3

∂z3

)
=
µw
Pr

∂2h3

∂y2
3

,

(γ − 1)ρw = 1, µw = A.

Usual no-slip and adhesion conditions are satisfied at the concave surface:

u3 = v3 = w3 = h3 = 0 (y3 = 0); (4.5)

the initial conditions for this region are obtained by matching with the solution for the near-wall part of the
undisturbed boundary layer (4.1)

u3 → (c/A)y3, h3 → (b/A)y3, v3, w3, p3 → 0 (x3 → −∞). (4.6)

In region 2 with a characteristic thickness ∆y ∼ δ, where the orders of magnitude of the longitudinal
component of velocity u, enthalpy h, density ρ, and viscosity µ are determined from (1.1), the pressure perturbation
∆p is generated by centrifugal effects and has the same order of magnitude as in region 3:

∆p ∼ kρu∆u∆y ∼ æδ∆u/M2
∞ ∼ ∆z2/(M2

∞hw∆x4/3).

Then, by comparing the orders of magnitude of the main terms of the Navier–Stokes equations, we obtain estimates
for perturbations of the velocity components:

∆u ∼ ∆z2/(hw∆x4/3æδ), v ∼ ∆z2/(hw∆x7/3æ), w ∼ ∆z/(hw∆x1/3). (4.7)

Estimates (4.7) allow us to introduce new variables x = x0 + ∆xx3, y = δy2, and z = ∆zz3 and asymptotic
expansions of the stream functions for the main part of the boundary layer:

u = u0(y2) +
∆z2

hw∆x4/3æδ
u2 + . . . , v =

∆z2

hw∆x7/3æ
v2 + . . . , w =

∆z
hw∆x1/3

w2 + . . . ,

p =
1

γM2
∞

+ . . .− æδ

M2
∞
K

y2∫
0

ρ0u
2
0 dy2 +

∆z2

M2
∞hw∆x4/3

p2 + . . . , (4.8)

ρ =
ρ0(y2)
M2
∞

+
∆z2

M2
∞hw∆x4/3æδ

ρ2 + . . . , h = h0(y2) +
∆z2

hw∆x4/3æδ
h2 + . . .

(the subscript 0 refers to flow parameters in the undisturbed boundary layer).
Substituting expansions (4.8) into the Navier–Stokes equations and into Eqs. (1.2) and (1.3) and performing

the limiting transition (2.5) for ∆x1/3 � hw 6 1 and δ1/2/æ1/2 � ∆x � ∆z/(æ1/2δ1/2), we find that the flow in
region 2 in the first approximation is described by the system of linear equations

ρ0
∂u2

∂x3
+ u0

∂ρ2

∂x3
+ ρ0

∂v2

∂y2
+ v2

dρ0

dy2
= 0,

u0
∂u2

∂x3
+ v2

du0

dy2
= 0, 2Kρ0u0u2 +Kρ2u

2
0 +

∂p2

∂y2
= 0,

ρ0u0
∂w2

∂x3
+
∂p2

∂z3
= 0, u0

∂h2

∂x3
+ v2

dh0

dy2
= 0,

(γ − 1)ρ0h0 = 1, ρ0h2 + ρ2h0 = 0,

which allows partial integration
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u2 = D
du0

dy2
, v2 = −u0

∂D

∂x3
, ρ2 = D

dρ0

dy2
, h2 = D

dh0

dy2
,

(4.9)

p2 = p2

∣∣∣
y2→∞

+KD(M2
∞ − ρ0u

2
0), D = D(x3, z3).

It follows from the last relation in (4.9) that the pressure perturbation p2 increases toward the external edge
of the boundary layer due to centrifugal effects in region 2 (p2|y2→∞ ∼ M2

∞). Therefore, in the disturbed region 1
of the uniform external flow with characteristic dimensions δ � ∆y ∼ ∆z � ∆x � 1, where the longitudinal
component of velocity is u ∼ 1, the gas density is ρ ∼ 1, and the gas enthalpy is h ∼ 1/((γ − 1)M2

∞), the pressure
perturbation has the following order of magnitude:

∆p ∼ ∆z2/(hw∆x4/3).

A comparison of the orders of magnitude of the main terms of the Navier–Stokes equations allows us to
obtain estimates for perturbations of the stream functions and introduce in region 1 new variables x = x0 + ∆xx3,
y = ∆zy1, and z = ∆zz3 and asymptotic expansions

u = 1 +
∆z2

hw∆x4/3
u1 + . . . , v =

∆z
hw∆x1/3

v1 + . . . , w =
∆z

hw∆x1/3
w1 + . . . ,

p =
1

γM2
∞

+ . . .− æ∆zKy1 +
∆z2

hw∆x4/3
p1 + . . . , (4.10)

ρ = 1 +
∆z2

hw∆x4/3
ρ1 + . . . , h =

1
(γ − 1)M2

∞
+

∆z2

hw∆x4/3
h1 + . . . .

Substituting expansions (4.10) into the Navier–Stokes equations and into Eqs. (1.2) and (1.3) and performing
the limiting transitions (2.5) for ∆x1/3 � hw 6 1 and δ1/2/æ1/2 � ∆x� ∆z/(æ1/2δ1/2), we find that the following
equations are valid in the first approximation in region 1:

∆z2

∆x2

(∂u1

∂x3
+
∂ρ1

∂x3

)
+
∂v1

∂y1
+
∂w1

∂z3
= 0,

∂u1

∂x3
+
∂p1

∂x3
= 0,

∂v1

∂x3
+
∂p1

∂y1
= 0,

∂w1

∂x3
+
∂p1

∂z3
= 0,

∂h1

∂x3
− ∂p1

∂x3
= 0, (4.11)

M2
∞(γ − 1)h1 + ρ1 = γM2

∞p1.

These equations may be transformed to the wave equation for the pressure perturbation p1:

M2
∞

M2
c

∂2p1

∂x2
3

=
∂2p1

∂y2
1

+
∂2p1

∂z2
3

, Mc ∼
∆x
∆z
� 1. (4.12)

The ratio of the characteristic longitudinal and transverse dimensions of the disturbed vortex region deter-
mines the critical Mach number Mc (for M∞ ∼ Mc, the characteristic dimensions of the disturbed vortex region in
the order of magnitude are equal to the Mach cone dimensions).

Matching of the asymptotic expansions (4.3) and (4.8) in regions 3 and 2, Eqs. (4.1) and (4.9) taken into
account, allows us to obtain the missing external boundary conditions for region 3 and the condition for their
nontrivial interaction:

u3 → (c/A)(y3 +D), w3 → 0, h3 → (b/A)(y3 +D) (y3 →∞),
(4.13)

p3 = p2|y2=0 = p2|y2→∞ +KDM2
∞, ∆z ∼ hwæ1/2δ1/2∆x5/6.

For nontrivial interaction of regions 2 and 1, the order of magnitude of the vertical component of velocity v
should be retained constant in these regions [16]. This is possible under the condition

∆z ∼ æ∆x2. (4.14)

Matching the asymptotic expansions (4.8) and (4.10), Eqs. (4.9), (4.11), (4.13), and (4.14) taken into account,
we obtain
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v1|y1=0 = v2|y2→∞ = − ∂D
∂x3

, p2|y2→∞ = M2
∞p1|y1=0,

(4.15)

p3 = M2
∞(p1|y1=0 +KD),

∂p1

∂y1
=
∂2D

∂x2
3

(y1 = 0).

If conditions (4.13) and (4.14) are simultaneously satisfied, a full three-dimensional flow structure is formed
[5–8, 21] in the disturbed vortex region with characteristic dimensions

∆x ∼ h6/7
w (δ/æ)3/7, ∆z ∼ h12/7

w æ1/7δ6/7. (4.16)

In this case, the flow in the near-wall region 3 is described by Eqs. (4.4) and the boundary and initial conditions (4.5),
(4.6), and (4.13). The pressure perturbation p3 is determined by Eq. (4.15); it is composed of pressure perturbations
due to the displacing action of the boundary layer (p1|y1=0) and centrifugal effects (KD). These components are
found from the joint solution of the problem for region 3 and the wave equation (4.12) for region 1, condition (4.15)
at the internal boundary and conditions of restriction of disturbances at the external boundaries being satisfied.
Naturally, the solutions in regions 3 and 1 should satisfy the condition of periodicity in the transverse direction
[see (2.10)].

The variables y1, p1, x3, y3, z3, u3, v3, w3, p3, h3, and D are normalized to the quantities λ/(2π),
λ3A6(γ − 1)3/(8π3KM2

∞c
2l10), cl3/(A2(γ−1)), l, λ/(2π), cl/A, A(γ−1)/l, λA(γ−1)/(2πl2), λ2A2(γ−1)/(4π2l4),

bl/A, and λ2A2(γ − 1)/(4π2KM2
∞l

4), respectively. Then, the boundary-value problem (2.10), (4.4)–(4.6), (4.13),
(4.15) for region 3 acquires the following form:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=
∂2u

∂y2
,

∂p

∂y
= 0,

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+
∂p

∂z
=
∂2w

∂y2
, u

∂h

∂x
+ v

∂h

∂y
+ w

∂h

∂z
=

1
Pr

∂2h

∂y2
,

u = v = w = h = 0 (y = 0),

u, h→ y + γ1D, w → 0 (y →∞), u, h→ y, v, w, p,D → 0 (x→ −∞), (4.17)

p = γ2p1|y1=0 +D,

u(x, y, z) = u(x, y, z + 2π), v(x, y, z) = v(x, y, z + 2π), w(x, y, z) = w(x, y, z + 2π),

h(x, y, z) = h(x, y, z + 2π), p(x, z) = p(x, z + 2π), D(x, z) = D(x, z + 2π),

γ1 = λ2A2(γ − 1)/(4π2l5KM2
∞), γ2 = λA4(γ − 1)2/(2πl6Kc2)

(notation is the same, the subscript 3 is omitted, and the thickness of layer 3 is normalized to an arbitrary quantity l).
The boundary-value problem for region 1 is

γ3
∂2p1

∂x2
=
∂2p1

∂y2
1

+
∂2p1

∂z2
,

∂p1

∂y1
=
∂2D

∂x2
(y1 = 0),

(4.18)
p1(x, y1, z) = p1(x, y1, z + 2π), γ3 = λ2A4(γ − 1)2M2

∞/(4π
2l6c2M2

c).

The boundary-value problems (4.17) and (4.18) contain three parameters of similarity: γ1, γ2, and γ3. The
first parameter determines the degree of interaction of regions 3 and 2, the second parameter determines the same
for regions 2 and 1, and the third parameter is responsible for the regime of interaction of viscid and inviscid flows.
The latter circumstance distinguishes the problem considered here of a three-layered perturbation of the flow, which
arises in the development of long-wave Görtler vortices in a hypersonic boundary layer near a moderately cooled
concave surface, from a similar problem for an incompressible fluid [5–8]. Therefore, the equation for perturbation
of the enthalpy h in (4.17) may be solved independently.

Subsequent linearization of the solution of the boundary-value problem (4.17) with respect to the initial
conditions and the use of the normal-mode representation of solutions (3.3) in regions 3 and 1 allow us to reduce
problems (4.17) and (4.18) to a system of ordinary differential equations
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βU + V ′ +W = 0, βyU + V = U ′′,

βyW −D[1− γ2β
2/(1 + γ3β

2)1/2] = W ′′, (4.19)

U = V = W = 0 (y = 0), U → γ1D, W → 0 (y →∞),

where D is a constant coefficient in representation of the form (3.3); ( · )′ = d/dy.
System (4.19) may be reduced to one equation for the function βU ′ +W ′, whose solution is expressed via

the Airy function Ai(y/β1/3) [22]. The following dispersion relation is valid:

γ2β
2/(1 + γ3β

2)1/2 − 3γ1Ai′(0)β5/3 = 1. (4.20)

Relation (4.20) differs from the corresponding relation for a fluid only by the presence of the parameter γ3 (see,
for example, [5, 8]). Nevertheless, it follows from (4.12) and (4.16) that the critical Mach number is Mc ∼ h

−6/7
w ;

therefore, we have γ3 ∼ h
12/7
w . Surface cooling and a decrease in hw lead to a decrease in the parameter γ3,

relation (4.20) acquires a form corresponding to an incompressible fluid, the increment β is independent of hw, and
the vortex growth rate normalized to the characteristic length (of the order of unity)

Be ∼ β/∆x ∼ (β/h6/7
w )(æ/δ)3/7

increases due to both surface cooling and decreasing boundary-layer thickness δ. Thus, it is shown analytically that
surface cooling leads to an increase in the growth rate of long-wave Görtler vortices.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01-00462)
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(Grant No. 00-15-96070).
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induced by wall roughness,” Philos. Trans. Roy. Soc. London, Ser. A, 335, 51–85 (1991).

8. V. V. Bogolepov and I. I. Lipatov, “Asymptotic theory of the Görtler vortices in the boundary layer of a liquid,”
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